Marco Torres
preventdisease.com
May 26, 2013
In the not too distant future, consumers will be able to run on-the-spot
tests for environmental toxins, GMOs, pesticides, food safety and more with
their smartphones and other hand-held devices.
Every human being on every developed nation on Earth, whether living in a
rural or isolated area, in the middle of a large city, or near an industrialized
area, now contains at least 700 contaminants in their body including pesticides,
pthalates, benzenes, parabens, xylenes and many other carcinogenic and
endrocrine disrupting chemicals.
We are being bombarded on a daily basis by an astronomical level of toxicity,
all controlled by chemical terrorists on behalf of the food
industry. Morever, many of these toxins affect our fertility and those of
successive generations.
It’s time for people to know exactly what they are putting in their bodies
and technology is coming to the rescue. University of Illinois at
Urbana-Champaign researchers have developed a cradle and app that uses a phone’s
built-in camera and processing power as a biosensor to detect toxins, proteins,
bacteria, viruses and other molecules.
“We’re interested in biodetection that needs to be performed outside of the
laboratory,” said team leader Brian Cunningham, a professor of electrical and computer
engineering and of bioengineering at Illinois. “Smartphones are making a big
impact on our society — the way we get our information, the way we communicate.
And they have really powerful computing capability and imaging. A lot of medical
conditions might be monitored very inexpensively and non-invasively using mobile
platforms like phones. They can detect molecular things, like pathogens, disease
biomarkers or DNA, things that are currently only done in big diagnostic labs
with lots of expense and large volumes of blood.”
“Modern biological research is also allowing an extension of laboratory
devices on to small computer chips to detect biological information within DNA
sequences,” said biotech specialist Dr. Marek Banaszewski. “Bioinformatic
algorithms within programs will aid the identification of transgenes, promoters,
and other functional elements of DNA making detection of genetically modified
foods on-the-spot and real-time without transportation to a laboratory.”
The wedge-shaped cradle created by Cunningham’s team contains a series of
optical components — lenses and filters — found in much larger and more
expensive laboratory devices. The cradle holds the phone’s camera in alignment
with the optical components.
At the heart of the biosensor is a photonic crystal. A photonic crystal is
like a mirror that only reflects one wavelength of light while the rest of the
spectrum passes through. When anything biological attaches to the photonic
crystal — such as protein, cells, pathogens or DNA — the reflected color will
shift from a shorter wavelength to a longer wavelength.
The entire test takes only a few minutes; the app walks the user through the
process step by step. Although the cradle holds only about $200 of optical
components, it performs as accurately as a large $50,000 spectrophotometer in
the laboratory. So now, the device is not only portable, but also affordable for
fieldwork in developing nations.
In a paper published in the journal Lab on a Chip, the team
demonstrated sensing of an immune system protein, but the slide could be primed
for any type of biological molecule or cell type. The researchers are working to
improve the manufacturing process for the iPhone cradle and are working on a
cradle for Android phones as well. They hope to begin making the cradles
available next year.
In addition, Cunningham’s team is working on biosensing tests that could be
performed in the field to detect toxins in harvested corn and soybeans, and to
detect pathogens in food and water.
Researchers at the Fraunhofer Research Institution for Modular Solid State
Technologies EMFT in Regensburg have also engineered an ingenius solution to
detecting toxins – a glove that recognizes if toxic substances are present in
the surrounding air.
The protective glove is equipped with custom-made sensor materials and
indicates the presence of toxic substances by changing colors. In this regard,
the scientists adapted the materials to the corresponding analytes, and thus,
the application. The color change — from colorless (no toxic substance) to blue
(toxic substance detected). The researchers also envision other potential
applications for the glove in the food industry.
Other handheld devices currently in development are portable
chemiluminescence detectors, but based on enzyme-catalyzed reactions emitting
light. The detection devices for nucleic acids, biotin associated with the
target DNA provides the handle for the chemiluminescent detection. The
non-radioactive DNA detection chemistry will be able to readily identify
single-copy genes in transgenic plants making them suitable for GMO
detection.
Marco Torres is a research specialist, writer and
consumer advocate for healthy lifestyles. He holds degrees in Public Health and
Environmental Science and is a professional speaker on topics such as disease
prevention, environmental toxins and health policy.
Sunday, May 26, 2013
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment